Review of Laminate Modeling Examples

Modeling Example	What We Discussed	Remarks
1. 2D laminate model	 Defining a 2D orthotropic material, layup, laminate property card (PCOMP), and material angles Symmetric vs. unsymmetric layups NOFISR, SRCOMPS parameters in analysis set manager 	 Based on Classical Lamination Theory Does not account for out-of-plane stresses or interlaminar stresses Uses an approximation technique to calculate the out-of-plane shear stresses (generally not calculated unless there are out-of-plane deformations) Not recommended if interlaminar stresses are significant (e.g., when you have free edges or holes) Easy to model and computationally less expensive
2. 3D laminate model	 Defining a 3D orthotropic material, layup, solid laminate property card (PCOMPS), and ply/stack direction 	 Accounts for out-of-plane stresses or interlaminar stresses Recommended if interlaminar stresses are significant (e.g., when you have free edges or holes) Computationally more expensive
3. 3D sandwich composite model	 Defining facesheet and core materials, separate layup definition for top and bottom facesheets, and separate laminate property cards for each facesheet and core. Additional methods for modeling a sandwich composite 	 3D modeling is recommended if interlaminar stresses are significant
4. 2D laminate failure model	 Selecting a failure criterion and defining required material properties Reviewing failure indices and creating an envelope for selected output vectors 	• Can use the API functionality and develop custom failure models (e.g., onset theory)