

Automation and Optimization with the FEMAP API
A Beginner’s Guide for FEMAP and NX Nastran Users

Adrian Jensen, PE – Senior Application Engineer

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 2 of 42

TABLE OF CONTENTS

1. THE FEMAP API AND OBJECT ORIENTED PROGRAMMING ... 4

1.1 WHAT IS AN API? ...4

1.2 WHAT IS OBJECT ORIENTED PROGRAMMING? ..6

1.3 FEMAP API OBJECTS ..7

2. INTRODUCTION TO FEMAP’S API ... 8

2.1 “HELLO WORLD” – YOUR FIRST FEMAP API...9

3. COLLECTING INFORMATION FROM THE USER .. 10

3.1 STANDARD DIALOG BOXES ..11

3.2 SET OBJECTS ..12

4. WORKING WITH FEMAP ENTITIES .. 13

4.1 ACCESSING MATERIAL PROPERTIES ...14

4.2 ACCESSING ELEMENT PROPERTIES ..15

4.3 ACCESSING VIEW PROPERTIES ..16

5. CONTROLLING PROGRAM FLOW .. 17

5.1 LOOPS AND IF-THEN STATEMENTS ..18

6. CONNECTING TO FEMAP AND EXCEL ... 19

6.1 SHOW AND TELL: PRESSURE VESSEL PIPING LOAD APPLICATOR ..23

7. POST PROCESSING ... 25

7.1 FREE BODY DIAGRAM GENERATOR ...26

7.2 FREEBODY PROPERTIES ...27

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 3 of 42

8. ANATOMY OF A SIMPLE API ... 28

8.1 DEFINING AN OBJECT ...29

8.2 DATA TYPES ...30

8.3 DIMENSIONING VARIABLES ..31

8.4 ENTITY TYPES ...32

8.5 USING THE CAPABILITIES OF AN OBJECT ...33

8.6 OBJECT METHOD SYNTAX ...34

8.7 RETURN CODES ...34

8.8 OBJECT PROPERTY SYNTAX ..38

8.9 CONCLUSION ..41

9. REMEMBER, YOU’RE NOT ALONE! ... 42

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 4 of 42

1. THE FEMAP API AND OBJECT ORIENTED PROGRAMMING

1.1 WHAT IS AN API?

• The FEMAP API is an OLE/COM-based programming interface and is object oriented programming. If you have
never programmed in an object oriented code, it can seem quite different and foreign.

• API means “Application Programming Interface”. It is important to understand that the API script you write is not
part of FEMAP, but is a stand-alone program that is interacting with FEMAP.

• There are a number of codes that can call FEMAP through the API: Visual Basic, VBA (Excel, Word, Access, etc.), C,
or C++.

• The most commonly used codes used are Visual Basic, VBA, and WinWrap.

• WinWrap is a flavor of Visual Basic that is included with FEMAP. In the FEMAP interface, WinWrap is
noncompilable, for this reason many choose not to use it, but it is a very convenient way to program if your
specific application does not need to be compiled.

• This seminar will focus on using WinWrap via the FEMAP API window.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 5 of 42

This is the optional FEMAP API editing window. Although the window appears to be part of your FEMAP session, it is not.
It is merely a code editing tool.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 6 of 42

1.2 WHAT IS OBJECT ORIENTED PROGRAMMING?

Traditional programming is usually seen as being a set of functions, or simply as a list of instructions.

• Object Oriented Programming (or OOP) can be seen as a group of objects that cooperate with each other. Each of
the objects has their own distinct set of capabilities.

It is helpful to think of each of the entities as being separate.

• Your Visual Basic code acts like a traditional code, i.e. as a set of instructions.

• The VB code makes requests of the API, which then acts upon those requests either by retrieving from and putting
things into the FEMAP database.

• Remember, FEMAP is a database, which only holds and displays data.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 7 of 42

1.3 FEMAP API OBJECTS

The objects found in the FEMAP API fall into three categories:

• FEMAP Application Object. This is the “king of the objects” within the FEMAP API. It is needed to create other
objects. It is also the object that will be used to perform operations, measure, calculate, display messages, etc.

o For example, create the FEMAP Application Object:
Dim App As femap.model

Set App = feFemap()

o Then using the feNode Method, the FEMAP Application Object can create a Node Object:
Dim nd As femap.Node

Set nd = App.feNode

• FEMAP Tool Objects. These objects allow access to the various windows available in the user interface, others
provide entity selection, and general data and file functionality. The Set Object is one of the most common.

o Use the feSet Method of the FEMAP Application Object to create Set objects:
Dim ndSet As femap.Set

Set ndSet = App.feSet

o Then use the Select Method of the Set Object to prompt the user to pick nodes:
ndSet.Select(FT_NODE, True, "Pick Nodes")

• FEMAP Entity Objects. Objects. For every entity within FEMAP (nodes, elements materials, loads, etc.) there is a
corresponding object within the API. These objects are used to manipulate entities.

o The Node Object can now manipulate the coordinates of nodes:
nd.x = 100

nd.y = 26.1

nd.z = 5.23

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 8 of 42

2. INTRODUCTION TO FEMAP’S API

At the end of this seminar, we will walk through an existing
program, line-by-line, and identify the building blocks of an
API.

That can be a bit boring, so before we get to that, let’s briefly
talk about some of the key concepts for working with the
FEMAP API:

• FEMAP Application Object

• Set Object

• Object Methods

• Object Properties

• Variables

• Data Types

• Return Codes

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 9 of 42

2.1 “HELLO WORLD” – YOUR FIRST FEMAP API

Programming can be very intimidating. For the uninitiated, the code sitting within a FEMAP API file is confusing and
overwhelming. In this example, we will take the first step in programming and simply prove to ourselves that connection to
the FEMAP interface through the API can be accomplished by “non-programmers”.

Topics Covered:

• API Files vs. Program Files

• Connecting to FEMAP

• Auto Complete within the API Programming Window

• Data Types

• Parameter Info

• Hunting the FEMAP help Files

Dimensioning the FEMAP Application Object, see
FEMAP API Help Section Section 3.1.2:

Method 1**

Dim App As femap.model

Set App = feFemap()

Method 2*

Dim App As femap.model

Set App = GetObject(,"femap.model")

Method 3

Dim App As Object

Set App = GetObject(, "femap.model")

**(Does not work from VB in Excel)
*(Does not automatically work from VB in Excel)

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 10 of 42

3. COLLECTING INFORMATION FROM THE USER

If you’re just interested in automating a repetitive task without a lot of user interaction, you might be better of using a
Program File (recorded macro). However, if you need some user interaction, you’ll need a way to collect information
from them.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 11 of 42

3.1 STANDARD DIALOG BOXES

Summoning the “Standard Dialog Boxes” involves a variety of FEMAP Application Object Methods to define coordinates,
vectors, planes or other types of information. These dialog boxes are very useful, nonspecialized methods to prompt the
user for information.

App.feCoordPick("Select the Location for the Circle Center", PointXYZ)

App.feVectorPick("Select Vector to Move Along", False, vecLength, vecBase, vecDir)

App.fePlanePick("Define the Cutting Plane", plBase, plNormal, plAxis)

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 12 of 42

3.2 SET OBJECTS

Set objects are the most common of the tool objects and any program that requires the user to select entities is going to
utilize Set objects.

The Select Method brings up the standard entity selection
dialog box with all the bells and whistles to facilitate picking
what you want.

entSET.Select(FT_ELEM, True, "Select Element(s)")

The SelectMultiID Method brings up dialog box allowing the
user to select entities from a list. In most cases you should
only use it for entities with titles.

entSET.SelectMultiID(FT_PROP, 1, "Select Properties")

The SelectID Method brings up an entity selection dialog box
that only allows one entity to be picked.

entSET.SelectID(FT_NODE, "Select One Node", ndID)

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 13 of 42

4. WORKING WITH FEMAP ENTITIES

Incorporating materials and properties into our models is really where we start to differentiate FEA from CAD. It might
seem like there isn’t a lot of time to be saved by automating the creation or modification of materials and properties, but
the subsequent programs will show that that these skills are important to have in your programming toolbox.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 14 of 42

4.1 ACCESSING MATERIAL PROPERTIES

Here’s a guide to accessing the various properties of an isotropic material card.

Sub Main

 Dim App As femap.model

 Set App = feFemap()

 Dim Mat As femap.Matl

 Set Mat = App.feMatl

 Dim MatSet As femap.Set

 Set MatSet = App.feSet

 Dim MatID As Long

 MatSet.Select(FT_MATL, True, "Select Materials")

 MatID = MatSet.First

 While MatID > 0

 Mat.Get(MatID)

 App.feAppMessage(4, "Mat ID = " + CStr(MatID))

 App.feAppMessage(2, "E = " + CStr(Mat.mval(0)))

 App.feAppMessage(2, "G = " + CStr(Mat.mval(3)))

 App.feAppMessage(2, "v = " + CStr(Mat.mval(6)))

 App.feAppMessage(2, "CTE = " + CStr(Mat.mval(36)))

 App.feAppMessage(2, "k = " + CStr(Mat.mval(42)))

 App.feAppMessage(2, "Cp = " + CStr(Mat.mval(48)))

 App.feAppMessage(2, "Density = " + CStr(Mat.mval(49)))

 App.feAppMessage(2, "Damping = " + CStr(Mat.mval(50)))

 App.feAppMessage(2, "Temp = " + CStr(Mat.mval(51)))

 App.feAppMessage(2, "Tens = " + CStr(Mat.mval(52)))

 App.feAppMessage(2, "Comp = " + CStr(Mat.mval(54)))

 App.feAppMessage(2, "Shear = " + CStr(Mat.mval(56)))

 App.feAppMessage(2, "Heat = " + CStr(Mat.mval(100)))

 MatID = MatSet.Next

 Wend

End Sub

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 15 of 42

4.2 ACCESSING ELEMENT PROPERTIES

Fortunately, element Properties aren’t as complicated and numerous as property or material Properties. That is, the
majority of the data is held in the FEMAP materials and properties. The most complicated part of defining an element is
managing the nodes.

Let’s take a look at some of the more straightforward properties like ID, color, layer, etc.:

 elemOBJ.ID = 19

 elemOBJ.type = FET_L_BEAM

 elemOBJ.topology = FTO_LINE2

 elemOBJ.color = 31508

 elemOBJ.layer = 1

 elemOBJ.propID = 6

 elemOBJ.Node(0) = 46659

 elemOBJ.Node(1) = 128139

 elemOBJ.release(0, 0) = 1

 elemOBJ.release(0, 1) = 1

 elemOBJ.release(0, 2) = 1

 elemOBJ.orient(0) = 0

 elemOBJ.orient(1) = 0

 elemOBJ.orient(2) = 1

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 16 of 42

4.3 ACCESSING VIEW PROPERTIES

This can be a bit confusing because the syntax of View Object Properties differs slightly from other object Properties.
Let’s look at a few examples

Sub Main

 Dim App As femap.model

 Set App = feFemap()

 Dim viewobj As femap.View

 Set viewobj = App.feView

 Dim viewID As Long

 App.feAppGetActiveView(viewID)

 viewobj.Get(viewID)

 viewobj.Draw(0) = False

 viewobj.Label(0) = 73

 viewobj.ColorMode(0) = 1

 viewobj.color(0) = 1

 viewobj.RenderPushLabel = (1)

 viewobj.Put(viewID)

End Sub

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 17 of 42

5. CONTROLLING PROGRAM FLOW

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 18 of 42

5.1 LOOPS AND IF-THEN STATEMENTS

Loops are commonly used to work through entities selected by a set object. “For” loops continue for a specified number
of iterations. “While” loops check a condition at the beginning of the loop and continue until the condition is false.

The standard If-Then statement is a great way to filter entities (If the element is a beam, then list ID number) or control
the flow of the program (If rc is equal to 0, Then exit the program). Incorporating Else and ElseIf statements simply opens
up more flow options, reducing the need for multiple nested If-Then statements. Let take a look at some examples

Check to see if “nodeID” is greater than zero. If so,
perform the specified actions. Repeat until nodeID ≯ 0.

If the background is black (0) then switch it to white (124),
otherwise switch it to black (0).

Sub Main

 Dim App As femap.model

 Set App = feFemap()

 Dim nodeOBJ As femap.Node

 Set nodeOBJ = App.feNode

 Dim nodeSET As femap.Set

 Set nodeSET = App.feSet

 Dim nodeID As Long

 nodeSET.Select(FT_NODE, True, "Select Nodes")

 nodeID = nodeSET.First

 While nodeID > 0

 nodeOBJ.Get(nodeID)

 App.feAppMessage(2,CStr(nodeOBJ.x))

 App.feAppMessage(2,CStr(nodeOBJ.y))

 App.feAppMessage(2,CStr(nodeOBJ.z))

 nodeID = nodeSET.Next

 Wend

End Sub

Sub Main

 Dim App As femap.model

 Set App=feFemap()

 Dim vobj As femap.View

 Set vobj=App.feView

 Dim viewID As Long

 App.feAppGetActiveView(viewID)

 vobj.Get(viewID)

 If vobj.WindowBackColor=0 Then

 vobj.WindowBackColor=124

 Else

 vobj.WindowBackColor=0

 End If

 vobj.Put(viewID)

 App.feViewRegenerate(0)

End Sub

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 19 of 42

6. CONNECTING TO FEMAP AND EXCEL

One of the abilities that makes the FEMAP API so powerful is the connection to MS Excel or other external programs.
Whether you’re dumping results to a spreadsheet or pushing a massive amount of load data into your model, connecting to
external databases is a game changer.

Topics Covered:

• Connecting to FEMAP from Excel

• Printing information to an Excel Workbook

• Pulling information from an Excel Workbook

Workflow:

• Open a new Excel worksheet

• Activate the Developer Tab

• Open the Visual Basic Editor

• Import the program from Part 1

• Update the program to get it to cooperate
with Excel

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 20 of 42

Remember this? Why is it important?

Method 1**

Dim App As femap.model

Set App = feFemap()

• Does not work from VB in Excel.

• Provides autocomplete to assist with programming

• Ensures connection to current FEMAP session

Method 2*

Dim App As femap.model

Set App = GetObject(,"femap.model")

• Requires the user to add the Femap Type Library to
the Excel Workbook References.

• Provides autocomplete to assist with programming

Method 3

Dim App As Object

Set App = GetObject(, "femap.model")

• Does not require special setup in Excel (References)

• There’s no autocomplete

Important information from the FEMAP help file:

“When you are connecting to an existing session there are some special considerations. If you are programming in an
environment outside of FEMAP (anything but the FEMAP API Programming Window), then you must use “GetObject” to
connect. This uses standard OLE/COM mechanisms to find the FEMAP object, but imposes a limitation. If you have multiple
copies of FEMAP running (multiple processes, not multiple models open in the same FEMAP), GetObject will always connect
you to the process that was started first. This is simply a limitation of the OLE/COM interface and can not be avoided.

If you are using the integrated WinWrap environment (API Programming) however, you can overcome this limitation by
never using “GetObject”. Instead, you can connect to the current FEMAP session, no matter how many FEMAP processes
are running by using”

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 21 of 42

Excel > Developer > Visual Basic > Insert > Module

From the Developer tab of Excel, click on the Visual Basic icon. Once

the Visual Basic window opens, click Insert > Module. Paste the

program into the Module. You can now close Visual Basic.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 22 of 42

Excel > Developer > Insert > Form Controls

Insert a button into the spreadsheet. Click and drag to set the button
size. When you let go of the mouse button, an “Assign Macro” dialog
box will appear. Select the LoadNodalData program that you just
created in Visual Basic. The button is now linked to the program and
is fully functional. Rename the button by right clicking on the button
and modifying the text.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 23 of 42

6.1 SHOW AND TELL: PRESSURE VESSEL PIPING LOAD APPLICATOR

Years ago, I had a pressure vessel project…THE pressure vessel project. From the geometry, to the loads, to the
documentation requirements, the complexity was endless. One example of a mind-numbing task was applying the
internal piping loads. There were eight internal vessels (pulse jet mixers, PJMs) within the parent vessel and it was
possible for each one to put load on the internal piping of the vessel. For each pipe, the load acted on a vector from the
centerline of the PJM to the centerline of the pipe. The magnitude of the load was a function of height and distance from
the PJM. It was brutal and the FEMAP API was my saving grace.

The first step was extracting nodes from the FEMAP model. We needed node ID number and coordinates. This
information was used in combination to calculate the direction and magnitude of the load. The next step was to push the
loads calculated in the Excel workbook, back into the FEMAP database. The process takes about 30 seconds with the API.
Applying the loads manually takes about 8 hours.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 24 of 42

Here’s the workflow:

CLICK THE “GATHER NODAL DATA” BUTTON, SWITCH TO THE FEMAP WINDOW

When you switch to the FEMAP window, you will see a nodal entity selection dialog box waiting for you. Select some of the pink nodes
on the beam elements. The color of the nodes centered between supports has been modified to make them easier to find. To select all
of the pink nodes, use the “Color” selection method.

SWITCH TO THE EXCEL SPREADSHEET

Data has been written into the spread sheet for the nodes you selected in FEMAP.

ENTER ADDITIONAL DATA INTO EXCEL

The spread sheet requires a pipe length and pipe diameter to calculate loads. For this particular model, the pipe is 170” by 2.2”. Now
that the spreadsheet has created loads we will use another program to apply them to the FEA model.

CLICK THE BUTTON, SWITCH TO THE FEMAP WINDOW

The API has updated the FEMAP database with the loads from Excel but they might not show up in the Model Info Tree. Regenerating
the image (Window > Regenerate, Ctrl G) will update the Model Info Tree with the new loads.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 25 of 42

7. POST PROCESSING

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 26 of 42

7.1 FREE BODY DIAGRAM GENERATOR

Freebody Diagrams (or FBDs) are an advanced post technique, yet they are beautifully simple at the same time. It’s all about
summing the forces and moments for a selection of elements and nodes. The trick is carefully selecting the entities and
making sure that the “Freebody Contributions” are logical. “Section Cut” display mode operates in the same manner as the
Interface Load, but rather than selecting elements and nodes, the user simply selects a cutting plane. FEMAP will
automatically select nodes along the cutting plane and elements on one side of the plane.

Topics Covered:

• FBD Object Properties and Methods

Workflow:

• Prompt the user to select a vector (this will
be the normal vector of the section cut
plane)

• Print the vector information to Excel

• Dimension a FBD Object

• Hardcode some of the FBD Object Properties

• Define other FBD Object Properties using
information from Excel

• Put the FBDs into FEMAP database

• Extract FBD force data from the FEMAP data
and print to Excel

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 27 of 42

7.2 FREEBODY PROPERTIES

The most common problems with freebody diagrams are selecting entities and choosing the correct contributions. Using
the Section Cut display mode eliminates the former while hard coding FBD options into an API eliminates the later.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 28 of 42

8. ANATOMY OF A SIMPLE API

Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Now we’ll walk through a simple API. All this API
does is move a set of selected nodes 10 units in the
x direction.

Yes, there is a function that will do this directly
without an API, but we are starting simple. The
entire script is shown on the left. We will walk
through each step in this API.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 29 of 42

8.1 DEFINING AN OBJECT
Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Sub Main at the top of the script signifies that what
follows is the main program.

Next we create an object called “App”. We then set
this object equal to the current FEMAP session.
Essentially, this creates the FEMAP Application
Object and calls it App. So the object App now has
all the Properties of the FEMAP Application Object.

What we want to do will also require the help of
another object, the Set Object. In this program, we
are calling it “entitySet” and creating it using the
feSet Method. entitySet now has all the Properties
and Methods inherent in the Set Object.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 30 of 42

8.2 DATA TYPES

Visual Basic requires the programmer to declare all variables before they are used as well as what type of data they will be.
The six data types are shown below. WinWrap corresponds to the Visual Basic 6 data types. This table can be found in
FEMAP API Help Section 1.2 “Data Types”.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 31 of 42

8.3 DIMENSIONING VARIABLES
Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Next we declare all the variables needed Select
Method of the Set Object (this will be described in
more detail on subsequent pages).

First, we declare a variable called “entityType” as a
4-byte integer data type (Long) and assign it a value.
This will be used to specify what type of entity we
will select with the Select Method.

Then, we declare a variable called “clearSet” as a
true/false value data type (Boolean) and assign it a
value. This will be used to indicate that we want the
Set Object cleared of any previous entities.

Finally, we declare a variable called “messageString”
as a character string data type (String) and assign it
a value. This will be the message the user sees when
the Set Object uses the Select Method.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 32 of 42

8.4 ENTITY TYPES

Each entity in the FEMAP API is identified by a name
and a number. The entity can be referred to by
either. In the preceding piece of code where I refer
to the node entity as the number 7, I could also
have referred to it as FT_NODE. Either way the API
will know to which entity type you are referring.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 33 of 42

8.5 USING THE CAPABILITIES OF AN OBJECT
Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Now that we have defined all of the variables that
will be used as inputs, we want to do is collect from
the user – what nodes they would like moved.

The Set Object has a handy Method that allows us
to do this called Select.

Objects have two types of capabilities:

• Methods (Functionality)

• Properties (Data)

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 34 of 42

8.6 OBJECT METHOD SYNTAX

The syntax in the above statement is standard. The object is what is being “asked” to act. The Method is what the object
is being asked to do. The inputs are what the object needs in order to execute the Method. The output is what the object
will “produce”, although often times, Methods will have no output.

The term rc is the return code and will generate a specific value depending on a number of object success states.

For more information, see FEMAP API Help Section 5.1.2, “Common Entity Methods”.

8.7 RETURN CODES

Often statements like the following are found in
API’s:

rc = object.Method(inputs,output)

The rc stands for return code. After the object
executes its Method, it returns a code that
corresponds to its success in executing the Method.
If the object is successful, a -1 is returned. If it is not
successful, something else will be returned
depending upon what went wrong. All the return
codes are found in the table on the right.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 35 of 42

Methods that Produce Output

How this all works is best explained by a more concrete example. Think of an object as a person, a person who will do
things that you ask. We will call this person “Mike”. Say we want “Mike” to go to the store and buy an apple. In order for
“Mike” to do this, we need to provide him with a car and money. For this Method, “Mike” will produce an output: an
apple. The statement would look like this:

Methods that Produce No Output

Now suppose we want “Mike” to wash the dishes in the kitchen. We need to provide him with the dishes, soap, a
sponge, and a sink. After he is done he will produce NO output for us because we haven’t asked him to bring us anything.
All we have done is ask him to go off and do something. The statement looks much like the previous one.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 36 of 42

Sometimes we ask objects to organize things. Sometimes we will ask them to create or move things. The only time
objects will have output is if we ask them to bring us something specific. This most likely seems fairly abstract, but once
you see how it actually works you will see that it is very intuitive.

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

The syntax of the entitySet. Select object Method
follows the standard syntax. For this object there is
no output, only inputs. This is because we are not
“asking” the object for anything concrete (like a
value); we are asking the object to place certain

entities into a set. The effect is having our desired
entities added to the entitySet. (Later, we will use an
object that will produce an actual output, a required

distance.)

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 37 of 42

A Set Object is used to store a set of entities, i.e. a list of nodes. The Select Method displays the above shown dialog box
so the user can select which nodes they are interested in. After the user selects these nodes, they are added to the set
called entitySet.

In order to do this, the Set Object needs:

• to know what type of entity to ask for: entityType, which has already been set to 7 (corresponding to nodes),

• to know if the object should be cleared of any previous entities: clearSet, has already been set to True,

• to know what message to display at the top of the entity selection dialog: messageString has already been set to
“Please Select the Nodes You Would Like To Move”

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 38 of 42

8.8 OBJECT PROPERTY SYNTAX

Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Certain object capabilities require no input and do
not provide output in the convectional way. These
are called Properties.

Such is the case with the entitySet.ID statement.

Instead this syntax returns the desired value to the
variable on the left hand side of the equal sign. In
this case setID will take on the ID number of the
object entitySet. A single program can have multiple
set objects defined, each containing their own data.
Each of these sets would have a specific ID to
differentiate them.

Note: It's recommended that you never hard code
set IDs in your program as it may have unintended
consequences. When a Set Object is created,
FEMAP will auto-assign the next available ID
automatically. To reference that set later, simply
use the ID Property rather than a hard-coded ID.

For more information, see FEMAP API Help Section
5.1.1, Common Entity Properties.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 39 of 42

Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

We will now use the feVectorLength Method of the
FEMAP Application Object to find the magnitude of
the nodal move we will be requesting.

First we declare a 3 dimensional array, composed of
8-byte real numbers called “vecMove”. This array
will represent the vector along which the translation
will take place. We then specify each value in the
array. This will be the feVectorLength Method
input.

Then we declare a variable called “vecLength” as an
8-byte real number (Double). No value is assigned
because it will be used for the feVectorLength
Method output.

What we are asking of the FEMAP Application
Object is for it to take our vector, called vecMove,
and tell us how long it is. What the object gives us is
a new value for vecLength. If the operation is
successful, rc will be given the value of –1.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 40 of 42

Sub Main

Dim App As Object

Set App = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = App.feSet

Dim entityType As Long

entityType = 7

Dim clearSet As Boolean

clearSet = True

Dim messageString As String

messageString = "Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType, clearSet, messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim vecLength As Double

rc = App.feVectorLength(vecMove, vecLength)

rc = App.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

And last, but certainly not least, we will request that
the FEMAP Application Object moves our nodes.

This Method, called feMoveBy, has the following
inputs:

• what type of entity it is moving,

• what set contains the ID’s of the entities to
move,

• whether or not this is a radial translation,

• the length of the translation,

• a vector specifying the direction of the
translation.

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 41 of 42

8.9 CONCLUSION

What is most interesting about the script we just explored is that it only does one thing: it moves the nodes. Everything

else found in script exists only to provide the last command with the information it needs to make the move. This is fairly

common. Often much of the API script is devoted to retrieving things from the database, interpreting them, changing

them, and then finally inserting them back in.

In our case, we retrieved the node numbers of that were to be moved, organized them into a set, and then requested

that the FEMAP Application Object move them.

The previous example is a simple one that uses very little logic. There are no for or while loops and no if then statements,

but all of the standard logic statements are available and are used frequently. Anyone with basic programming skills

should be able to utilize them as they would in any other language.

You should now understand the basics needed to read and understand basic API’s. The only way to become a pro at

writing them is to sit down and do it. In no time you will find that the structure and capabilities are extremely powerful.

You will also find that you will never again need to scratch your head and say, “I wish the FEMAP programmers would

have included this feature.”

Automation and Optimization with the FEMAP API

AppliedCAx / Predictive Engineering - Please share with your friends and visit us online at www.AppliedCAx.com Page 42 of 42

9. REMEMBER, YOU’RE NOT ALONE!

Reach out to us at www.AppliedCAx.com for APIs, Technical Seminars and more information on FEMAP and NX Nastran.
For more information on API programming with FEMAP, check out our online course.

And thanks https://xkcd.com/ for all the great comics!

http://www.appliedcax.com/
https://appliedcax.com/training/femap-and-nx-nastran-training-courses/675-on-demand-web-training-femap-api-programming-and-automation
https://xkcd.com/

FEMAP & STAR-CCM
LICENSES | TRAINING | SUPPORT

+

Siemens PLM Software for the USA

CAE Support • CAD Workflows • CAM Posts • PLM Architecture

AppliedCAx.com

FEMAP • NX CAD • NX CAM • Solid Edge • Simcenter 3D • STAR-CCM+ • Teamcenter

