

Seminar Outline

- Normal Modes Analysis: Basics
- Why is it Useful
- How it Works
 - Principle of Orthogonality
 - Strain Energy
 - Mass Participation
- Available Resources
- Next Training Opportunity on October 15-19, 2012

E.O.M.
$$m \frac{\partial^2 u}{\partial t^2} + c \frac{\partial u}{\partial t} + ku = r(t)$$

Eigenvalue problem: undamped free vibration:

$$m \frac{\partial^2 u}{\partial t^2} + ku = 0$$

Assuming a solution of the form:

u=u_o sin
$$\omega$$
t

Then:
$$\left[k-\omega^2 m\right]\left\{u_o\right\}=0$$

For non-trivial solutions (i.e., solutions that are more than just zeros):

$$\left[k-\omega^2 m\right]=0$$

Giving us the well know frequency relationship:

$$\omega = \sqrt{\frac{k}{m}}$$

Why it is Useful: Just Basic Goodness of Normal Modes

©2012 Predictive Engineering All Rights Reserved

Why it is Useful: Just Basic Goodness of Normal Modes

Why it is Useful: PSD Analysis (Frequency Domain Analysis)

- ✓ Fatigue
- ✓ Wind Turbine
- ✓ Air flow over a wing
- ✓ Acoustic Input from Jet Engine Exhaust
- ✓ Earthquake Ground Motion
- ✓ Wheels running over a Rough Road
- ✓ Ocean Wave Loads on Offshore Platforms

Why it is Useful: Earthquake Analysis

Why it is Useful: Modal Frequency Sweep

Why it is Useful: NVH

Normal Modes / Eigenvalue problem: undamped free vibration

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{23,000}{100}} = 15.16 \text{ rad/sec}$$

NX Nastran reports frequencies in cycles per second. Hence, 15.16 radians/sec is equal to 2.41 cycles/sec.

Example Model: Normal Modes Validation Start.modfem

Simple CBUSH with Mass Element

Focus: Units | Theory | Why Only Three Modes?

Normal Modes / Eigenvalue problem: Principal of Orthogonality

- Even basic normal modes analysis can be confusing
- Basic beam model with a pinned support is interrogated
- ➤ Is it logical?
- Why are there double modes?

Example Model: Simple Beam - Principal of Orthogonality.modfem
Analyze | Change B.C.'s | Double Modes

Normal Modes / Eigenvalue problem: Strain Energy Density

- To improve the dynamic performance it is often as simple as moving the first mode to a higher frequency
- Normal modes is all about stiffness and mass
- Strain energy tells you where to add stiffness

Example Model:Radioframe Networks GR-63-Core Seismic Analysis.MODFEM Show Strain Energy | Discuss How Improvements Were Made | CORE-GR-63 Zone 4 Seismic

Normal Modes / Eigenvalue problem: Mass Participation and Frequency Sweep Analysis

- Mass Participation Tells you what is important
- > Expand around significant modes

Normal Modes / Eigenvalue problem: Mass Participation and Optimization

- Mass Participation Tells You Heaps
- Optimization is often best done by intelligent inspection
- Don't expect miracles from computer programs

Example Model: Coors Tek Paper Mill Forming Board - Original Design - Start.modfem

Normal Modes / Eigenvalue problem:

TOSCA Optimization

> Femap Optimization for Vibration

Normal Modes / Eigenvalue problem: Resources

- NX Nastran Documentation
- Predictive Engineering Website

➤ Be Inquisitive – we have lots of expertize to leverage

