Femap and NX Nastran Best Practices						
Technical Seminar for Fem	nap and NX Nastran Users					
Hosted by: George Laird, Ph.D Adrian Jensen, EIT,	., P.E., Principal Mechanical Engineer Senior Staff Engineer					
FINITE ELEMENT ANALYSIS Predictive Engineering	Applied CAX We do this every day					
FEA, CFD & LS-DYNA Training, Support and Consulting	Siemens NX CAD, CAM, CAE, Teamcenter and Femap and NX Nastran Sales					

1. INTRODUCTION

We plan to cover our short list of model and analysis procedures from building a model to running it. We are keeping it short since a longer list is rarely implemented since one rarely remembers "everything". Thus we are focusing on the big stuff that will make the *difference* in your modeling efforts and the *quality* of your analysis product.

1.1 MODELING

- Avoid complexity with a passion.
- Small is beautiful
- Clean geometry is your friend
- A perfect quad is craftsmanship at its finest
- Force, mass, dimension checks are your first defense

1.2 ANALYSIS

- $\,\circ\,$ Stress just flows
- What goes in has to equal what goes out
- Vibration is about mass and constraints

1.3 ELEGANT SIMPLICITY IS DECEPTIVELY DIFFICULT TO ACHIEVE

2. MODELING

Predictive Engineering

FINITE ELEMENT ANALYSIS

2.1 AVOID COMPLEXITY

2.1.1 WHEN ONE CAN JUST GLUE IT

When you build simple, one should build simple. What does this exactly mean? If the structure is appropriate, use glued contact to join up meshes to create assemblies of larger parts. NX Nastran has very good technology for joining tets-to-hexs, plates-to-solids and likewise plates-to-plates.

For more information see our Seminar:

Hex Meshing Assembly Modeling for Optimization

2.2 SMALL IS BEAUTIFUL

2.2.1 TRY NOT TO MODEL BOLTS BUT USE RBE2 AND BEAM ELEMENTS

Although this might sound obvious but one of the real benefits is that one can directly extract bolt axial and shear forces for downstream bolt calculations. And RBE2 and their cousin, RBE3 are great for opening doors to idealization efficiency.

For more information see our Seminar:

RBE3 to Smear Mass and Force

Connections 2013

2.2.2 EVEN IF YOU CAN SOLVE 10,000,000 NODES, WHAT THEN?

Even though you can go gigantic, use Mesh / Geometry Preparation to create better elements and then force two elements through thickness without having to add god-zillon elements.

Always Jacobian (J > 0.942 Nastran Problems)

Mesh / Geometry Preparation (J < 0.9 Runnable)

For more information see our Seminar: Femap and NX Nastran Update

But the real question is whether or not you are getting the mesh that you need?

Output Set: Model Data to Contour

Elemental Contour: Jacobian

Contour double:

Automesh S	Solids				×
-Node and	Element Op	tions			
Node <u>I</u> D	1	CSys	0Basic Rectangular	▼ Node <u>P</u> aram	Elem Param
Ele <u>m</u> ID	1	P <u>r</u> operty	1SOLID Property	- 1	. Op <u>t</u> ions
Mesh Gen	eration			_	
S <u>u</u> rfa	ice Mesh On	ly	Multiple Tet thru Thickness	Merge Nodes 0.	.Off 👻
Allow Mapped Meshing It Sliver F		Tet Sliver Removal	Tet Optimization 3.	.Default 👻	
🔽 Midsi	de <u>N</u> odes			Tet Growth Ratio 1	.1 to 1
Update	e Mesh Sizin	g		ОК	Cancel

Automesh	Solids	-			X
Node and	Element Op	otions			
Node <u>I</u> D	899	CS¥s	0Basic Rectangular	▼ Node <u>P</u> aram	Elem Param
Ele <u>m</u> ID	719	P <u>r</u> operty	0Use Meshing Attributes	- 1	Op <u>t</u> ions
Mesh Ger	eration			_	
S <u>u</u> rfa	ace Mesh Or	nly 🛛	Multiple Tet thru Thickness	Merge Nodes)Off ▼
Allov	v Mapped M	eshing 🛛	Tet Sliver Removal	Tet Optimization 3	3Default 🔹
🗹 Mids	ide <u>N</u> odes			Tet <u>G</u> rowth Ratio	1. to 1
Updat	e Mesh Sizir	ng		ОК	Cancel

For more information, stay tuned for the Femap v11.1 seminar (~December 2013).

FINITE ELEMENT ANALYSIS Predictive Engineering

2.3 CLEAN SKIN GEOMETRY PREVENTS MESH PATHOLOGIES 2.3.1 MANIFOLD ALWAYS AND NON-MANIFOLD AT THE END

We know it sounds simple but it requires up-front work for down-stream payoffs. We won't sermonize too much but a clean foundation ensures many other benefits than just a beautiful mesh.

For more information see our Seminar:

Surface Modeling Working with Surfaces

Non-Manifold the Impossible

2.3.2 STAY ABREAST OF NEW DEVELOPMENTS

Femap v11.1 has solved many problems with non-manifold add

A Chunk of Junk

For more information, stay tuned for the Femap v11.1 seminar (~December 2013).

2.4 A PERFECT QUAD IS FEA CRAFTSMANSHIP AT ITS FINEST

Stresses are calculated at integration points and that clean stresses ensure stress visualization clarity and helps one debug your model as to reality or artifact. Or in other words; "*If it looks good, it is good*." Nevertheless, always check your Jacobian. To get to quad nirvana, embrace using the Mesh Toolbox.

For more information see our Seminar:

Stress Visualization and Validation Surface Modeling

FINITE ELEMENT ANALYSIS Predictive Engineering

2.5 FORCE, MASS, DIMENSION CHECKS ARE YOUR FIRST DEFENSE2.5.1 UNIT CHECK AND SIGNIFICANT DIGITS

Verify that force, elastic moduli, acceleration, mass density and dimensions represent a consistent set of units. It sounds obvious but one might be surprised how a digit or two can get slipped in among friends. We also recommend to adhering to significant digits in all analysis entries. Why? It makes debugging easier and implicitly demonstrates that you are aware of the accuracy of your analysis work.

Define Material - ISOTRO	DPIC		X				
ID 1 <u>T</u> itle	Steel <u>C</u> olo	r 1896 Palette	Layer 1 Type				
General Function References Nonlinear Ply/Bond Failure Creep Electrical/Optical Phase							
Stiffness							
Youngs Modulus, <u>E</u>	3000000.	Tension	0.				
Shear Modulus, <u>G</u>	0.	Compression	0.				
Poisson's Ratio, n <u>u</u>	0.32	Shear	0.				
Thermal							
Expansion Coeff, <u>a</u>	0.		7.33145E-4 0.				
Conductivity, <u>k</u>	0.	Mass De <u>n</u> sity					
Specific <u>H</u> eat, Cp	0.	Damping, 2C/Co					
Heat Generation Fact	or 0.	Reference Lemp					
f _{xy} Loa <u>d</u>	Save	Сору	OK Cancel				

Material Card is "Bare-Bones"

Descriptive Load Names "DNV Main Load Path at FY=92 kN"

Editing Load Definition			
Load Set 2 DNV Prima	ary Load Path Reaction at		
Title DNV Main Load Path at	FY=92 kN	Coord S <u>y</u> s	0Basic Rectangular 🗸
<u>C</u> olor 10 <u>P</u> alette	Layer 1		
Force	Direction		Method
	Components		Onstant
	Vector		🔘 Variable
	Along Curve		Data Surface
	Normal to Plane		
	Normal to Surface	Specity	<u>A</u> dvanced
	Load	Time / Cone Descendence	Data Curfa a
		1 Ime/Freq Dependence	
		0None • 2	
	FY 92000		0None
	FZ		0None 👻 🏢
	Phase 0.	0None - 5	N
			×
		ſ	OK Cancel

2.5.2 CHECK MENU

We always provide dimensional, force and mass verification in our reports using direct Femap tools.

The GFX Measure Tool for Quick Dimensioning

Check Everything and Document It

Check Sum of Forces

Summation of Forces, Moments	and Pre	ssures for	Set	2	(CSys 0)			
Nodal Force	FX =	0.	FY :	=	366000.	\mathbf{FZ}	=	0.
Nodal Moment	MX =	5607750.	MY :	=	0.	MZ	=	0.
Pressure Force	FX =	0.	FY :	=	0.	FΖ	=	0.
Body Translational Accel	FX =	0.	FY :	=	-116217.	\mathbf{FZ}	=	0.
Body Varying Trans Accel	FX =	0.	FY :	=	0.	FΖ	=	0.
Body Rotational Accel	FX =	0.	FY :	=	0.	FΖ	=	0.
Body Rotational Velocity	FX =	0.	FY :	=	0.	FΖ	=	0.
Totals (CSys 0)								
About Location	x =	0.	Y :	=	0.	Z	=	0.
Forces	FX =	0.	FY :	=	249783.	FΖ	=	0.
Moments	MX =	12901551.	MY :	=	0.	MZ	=	14351206.

To obtain the GFX tool (it is an API), it is buried in our Seminar: Analysis Workflows (See our website www.PredictiveEngineering.com)

3. ANALYSIS CHECKOUT

If you have done everything up to this point, your model should be really tight and you shouldn't have too many surprises. But knowing full well the quote: *"All models are wrong, but some models are useful."* We have a few more checks to perform.

3.1 STRESS JUST FLOWS

- $\,\circ\,$ If it looks good, it is good
- Stress should never look uneven since it just flows
- Stress is computed at Guass points and then extrapolated to nodes and averaged
- Artifacts can be explained via basic principles and don't need a fancy explanation

For more information see our Seminar: Stress Visualization and Validation

3.2 WHAT GOES IN HAS TO EQUAL WHAT GOES OUT3.2.1 FBD AS IF YOUR LIFE DEPENDED UPON IT

Never underestimate the utility of a simple FBD check based on reaction forces. This is the basic check and one doesn't need to request any special outputs and it works for linear and nonlinear analysis.

For more information see our Seminar:

Summing All Reaction Forces

Femap and NX Nastran Update

3.3 VIBRATION IS ABOUT MASS AND CONSTRAINTS3.3.1 CHECK F06 FOR MASS SUMMATION AND KNOW WHAT YOU KNOW

Although this is just another check, we wanted to let you guys know

FO6 Check-Out Basics

- Do the element types and numbers make sense?
- Does the model mass exactly match that reported in the "OUPUT FROM GRID POINT WEIGHT GENERATOR"?
- Error and Warning Messages?

Vibration Analysis White Paper

For more information see our Seminar:

Normal Modes Analysis

3.3.2 GROUND CHECK IF YOU ARE DOING AEROSPACE QUALITY WORK

This check-out technique provides a numerical proof that your stiffness matrix is up-to-snuff. It is a rather dry subject and we'll leave it up to the seminar to flesh-out exactly how to do Ground Check, but if you have ever wondered what this screen does – this is your opportunity.

Model Check	¢				×
-Weight Che	eck		Ground Ch	leck	
DOF SET	G	<u> </u>	DOF SET	<u> </u>	• <u>E</u>
	<u>N</u>	<u>A</u>		<u>N</u>	ΞA
	N+AUTOSPC	<u>v</u>		🔲 N+A <u>l</u>	JTOSPC
					Print Forces Above
<u> </u>	enter of Gravity)			EC	10 %
Re <u>f</u> Node	0		Ref Nod <u>e</u>		0
Units	0W	/eight 👻	Max Strajn	Energy	0.
Pre	w Next.			<u>о</u> к	Cancel

For more information see our Seminar:

What is Groundcheck?

4. ELEGANT SIMPLICITY IS DECEPTIVELY DIFFICULT TO ACHIEVE

A good modeler:

- Saves their model locally to a unique name every couple of hours. We append "WIP" to our model names and then save them as WIP A, WIP B, WIP C, etc. Moral of the story, disk space is cheap, LAN is slow and one can always recover quickly from heading down the wrong path or an "accident";
- Performs all checks prior to releasing the model to their colleagues and of course, production;
- Uses symmetry even if they have to spend 15 minutes explaining that it have no effect upon the solution accuracy since it enforces a verification check on geometry and loads;
- Employs beam elements since they are the ultimate in optimization flexibility and enforces a certain modeling discipline to use them effectively (and likewise for plates elements);
- Is comfortable with RBE2 and RBE3 elements and understands that they are multi-point constraints and not suitable for geometrically nonlinear analysis but just fine for most mildly non-linear material analyses;
- Strives to hex mesh but is also quick to pull the plug and tex-mesh that which belongs to tet meshing and then use Glued Connections to handle the tet-to-hex transition;
- Avoids the use of Contact for Multi-Part Assemblies but when absolutely necessary, does it locally, simply and with full-knowledge of the cost/benefit analysis since the solution is going to take a big performance hit.
- Reads the manuals, attends technical seminars, creates stupid simple "pilot" models when embarking upon new analysis techniques and calls technical support when roadblocks are hit.

5. TRAINING OPPORTUNITIES

LS-DYNA Analysis for Structural Mechanics, January 27-30, 2014

Femap and NX Nastran Training, April 21-25, 2015

