Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

/>
Star-CCM+

Lagrangian multi-phase with DEM mixer demo in STAR-CCM+

October 29, 2019

In this video we look at the Lagrangian method for multi-phase models. There are two main Lagrangian methods within STAR-CCM+, LMP (Lagrangian Multi-Phase) and DEM (Discreet Element Method).

With the Lagrangian Multi-Phase you’re essentially injecting a number of particles into your simulation flow. Usually this is done with sprays and droplets, so there are thousands or millions of particles injected, grouped into what is called parcels and tracked throughout the flow. It has many uses, it can be done for steady state, it can be done for transient analysis. The particles can be part of reacting flow if you’re doing combustion, either a liquid fuel or solid fuel, but with LMP models, it will calculate the particle path, and that path will be saved and  you can go back and plot what the particle path was for your analysis.

We also look at a demo example we put together using rubber balls that are turning around and being mixed in a rhythm mixer. This is  using an overset mesh to model the motion of the blades. It could be done with a rigid body motion, but we thought this would be a good application just to demonstrate the use of our overset mesh. One advantage of an overset mesh is if you want to make a modification, let’s say using two ribbons that are standing next to each other and a wider bat that might be intermixing with the space, that would require the overset mesh.

We open up the model and go through how it’s set up, how the over mesh is defined and poke around how we set up the DEM model itself.

It’s time to unleash your potential

Reach out to the team at Applied CAx to learn how our solutions can make your company’s goals achievable.